Pythagorean Identities
sin²a + cos ²a = 1 tan2a + 1 = sec2a cot2a + 1 = cosec2a
sin2a = 2 sina cosa cos2a = cos²a – sin²a tan 2a = 2tana / (1 – tan²a)
cot 2a = (cot²a – 1) / 2 cota
Sum and Difference identities
For angles x and y, we have the following relationships:
sin(x + y) = sin(x)cos(y) + cos(x)sin(y) sin(x – y) = sin(x)cos(y) – cos(x)sin(y)
cos(x + y) = cos(x)cos(y) – sin(x)sin(y) cos(x – y) = cos(x)cos(y) + sin(x)sin(y)
tan(x+ y) = tan(x) + tan(y)−tan(x) tan(y) tan(x-y) = tan(x) − tan(y)+tan(x) tan(y)
Identities
sin²θ + cos²θ = 1
tan²θ + 1 = sec²θ
cot²θ + 1 = cosec²θ
Basics
If θ is the angle in a right-angled triangle, then
Sin θ = Perpendicular/Hypotenuse Cos θ = Base/Hypotenuse
Tan θ = Perpendicular/Base. Cot θ = Base/Perpendicular
Sec θ = Hypotenuse/Base Cosec θ = Hypotenuse/Perpendicular
Table
Angles |
0° |
30° |
45° |
60° |
90° |
Sin θ |
0 |
½ |
1/√2 |
√3/2 |
1 |
Cos θ |
1 |
√3/2 |
1/√2 |
½ |
0 |
Tan θ |
0 |
1/√3 |
1 |
√3 |
∞ |
Cosec θ |
∞ |
2 |
√2 |
2/√3 |
1 |
Sec θ |
1 |
2/√3 |
√2 |
2 |
∞ |
Cot θ |
∞ |
√3 |
1 |
1/√3 |
0 |
Find the value of [cos (900 + A) × sec (3600 - A) × tan (1800 - A)] / [sec (A - 7200) × sin (A + 5400) × cot (A - 900)].
a) 0 b) 1 c) – 1 d) 2
Solution:
cos (900 + A) × sec (3600 - A) × tan (1800 - A) / sec (A - 7200) × sin (A + 5400) × cot (A - 900)
⇒ (-sin A) × (sec A) × (-tan A) / sec (-(2 × 3600 - A)) × sin (3 × 1800 + A) × [-cot (900 - A)]
⸫ sec (-θ) = sec θ and cot (-θ) = -cot θ
⇒ sin A × sec A × tan A / sec A × (-sin A) × (-tan A)
⇒ sin A × sec A × tan A / sin A × sec A × tan A = 1.
Answer: b
Click below for more
No Reviews. Be the First Student to Review the course...
© 2025 Sreenivas EDU Services (OPC) Pvt Ltd.
0 | 0 Reviews